

Welcome to Tor codebase’s documentation!

Contents:

	Overview
	The very high level

	Some key high-level abstractions

	The rest of this document.

	Utility code in Tor
	Compatibility code

	Containers

	Cryptography

	Memory management
	Heap-allocation functions

	Grow-only memory allocation: memarea.c

	Collections in tor
	Smartlists: Neither lists, nor especially smart.

	Digest maps, string maps, and more.

	Intrusive lists and hashtables

	Time in tor
	What time is it?

	Cached views of time.

	Parsing and encoding time values

	Scheduling events

	Lower-level cryptography functionality in Tor
	RNG facilities

	Cryptographic digests and related functions

	Stream ciphers

	Public key functionality

	Metaformats for storage

	Boxed-file storage

	Certificates

	TLS

	OS compatibility functions
	The filesystem

	Networking

	Process launch and monitoring

	Threads in Tor

	String processing in Tor
	Comparing strings and memory chunks

	Parsing text

	Generating blocks of text

	Logging helpers

	Data flow in the Tor process
	Connections and buffers: reading, writing, and interpreting.

	From connections to channels

	From channels through circuits

	Sending cells on circuits: the complicated bit.

	Tor’s modules
	Generic modules

	Node-status modules

	Client modules

	Server modules

	Onion service modules

	Authority modules

	Miscellaneous modules

	This not that

Overview

This document describes the general structure of the Tor codebase, how
it fits together, what functionality is available for extending Tor,
and gives some notes on how Tor got that way.

Tor remains a work in progress: We’ve been working on it for more than a
decade, and we’ve learned a lot about good coding since we first
started. This means, however, that some of the older pieces of Tor will
have some “code smell” in them that could sure stand a brisk
refactoring. So when I describe a piece of code, I’ll sometimes give a
note on how it got that way, and whether I still think that’s a good
idea.

The first drafts of this document were written in the Summer and Fall of
2015, when Tor 0.2.6 was the most recent stable version, and Tor 0.2.7
was under development. If you’re reading this far in the future, some
things may have changed. Caveat haxxor!

This document is not an overview of the Tor protocol. For that, see the
design paper and the specifications at https://spec.torproject.org/ .

For more information about Tor’s coding standards and some helpful
development tools, see doc/HACKING in the Tor repository.

For more information about writing tests, see doc/HACKING/WritingTests.txt
in the Tor repository.

The very high level

Ultimately, Tor runs as an event-driven network daemon: it responds to
network events, signals, and timers by sending and receiving things over
the network. Clients, relays, and directory authorities all use the
same codebase: the Tor process will run as a client, relay, or authority
depending on its configuration.

Tor has a few major dependencies, including Libevent (used to tell which
sockets are readable and writable), OpenSSL (used for many encryption
functions, and to implement the TLS protocol), and zlib (used to
compress and uncompress directory information).

Most of Tor’s work today is done in a single event-driven main thread.
Tor also spawns one or more worker threads to handle CPU-intensive
tasks. (Right now, this only includes circuit encryption.)

On startup, Tor initializes its libraries, reads and responds to its
configuration files, and launches a main event loop. At first, the only
events that Tor listens for are a few signals (like TERM and HUP), and
one or more listener sockets (for different kinds of incoming
connections). Tor also configures a timer function to run once per
second to handle periodic events. As Tor runs over time, other events
will open, and new events will be scheduled.

The codebase is divided into a few main subdirectories:

src/common – utility functions, not necessarily tor-specific.

src/or – implements the Tor protocols.

src/test – unit and regression tests

src/ext – Code maintained elsewhere that we include in the Tor
source distribution.

src/trunnel – automatically generated code (from the Trunnel)
tool: used to parse and encode binary formats.

Some key high-level abstractions

The most important abstractions at Tor’s high-level are Connections,
Channels, Circuits, and Nodes.

A ‘Connection’ represents a stream-based information flow. Most
connections are TCP connections to remote Tor servers and clients. (But
as a shortcut, a relay will sometimes make a connection to itself
without actually using a TCP connection. More details later on.)
Connections exist in different varieties, depending on what
functionality they provide. The principle types of connection are
“edge” (eg a socks connection or a connection from an exit relay to a
destination), “OR” (a TLS stream connecting to a relay), “Directory” (an
HTTP connection to learn about the network), and “Control” (a connection
from a controller).

A ‘Circuit’ is persistent tunnel through the Tor network, established
with public-key cryptography, and used to send cells one or more hops.
Clients keep track of multi-hop circuits, and the cryptography
associated with each hop. Relays, on the other hand, keep track only of
their hop of each circuit.

A ‘Channel’ is an abstract view of sending cells to and from a Tor
relay. Currently, all channels are implemented using OR connections.
If we switch to other strategies in the future, we’ll have more
connection types.

A ‘Node’ is a view of a Tor instance’s current knowledge and opinions
about a Tor relay orbridge.

The rest of this document.

Note: This section describes the eventual organization of this
document, which is not yet complete.

We’ll begin with an overview of the various utility functions available
in Tor’s ‘common’ directory. Knowing about these is key to writing
portable, simple code in Tor.

Then we’ll go on and talk about the main data-flow of the Tor network:
how Tor generates and responds to network traffic. This will occupy a
chapter for the main overview, with other chapters for special topics.

After that, we’ll mention the main modules in Tor, and describe the
function of each.

We’ll cover the directory subsystem next: how Tor learns about other
relays, and how relays advertise themselves.

Then we’ll cover a few specialized modules, such as hidden services,
sandboxing, hibernation, accounting, statistics, guards, path
generation, pluggable transports, and how they integrate with the rest of Tor.

We’ll close with a meandering overview of important pending issues in
the Tor codebase, and how they affect the future of the Tor software.

Utility code in Tor

Most of Tor’s utility code is in modules in the src/common subdirectory.

These are divided, broadly, into compatibility functions, utility
functions, containers, and cryptography. (Someday in the future, it
would be great to split these modules into separate directories. Also, some
functions are probably put in the wrong modules)

Compatibility code

These functions live in src/common/compat*.c; some corresponding macros live
in src/common/compat*.h. They serve as wrappers around platform-specific or
compiler-specific logic functionality.

In general, the rest of the Tor code should not be calling platform-specific
or otherwise non-portable functions. Instead, they should call wrappers from
compat.c, which implement a common cross-platform API. (If you don’t know
whether a function is portable, it’s usually good enough to see whether it
exists on OSX, Linux, and Windows.)

Other compatibility modules include backtrace.c, which generates stack traces
for crash reporting; sandbox.c, which implements the Linux seccomp2 sandbox;
and procmon.c, which handles monitoring a child process.

Parts of address.c are compatibility code for handling network addressing
issues; other parts are in util.c.

Notable compatibility areas are:

	mmap support for mapping files into the address space (read-only)

	Code to work around the intricacies

	Workaround code for Windows’s horrible winsock incompatibilities and
Linux’s intricate socket extensions.

	Helpful string functions like memmem, memstr, asprintf, strlcpy, and
strlcat that not all platforms have.

	Locale-ignoring variants of the ctypes functions.

	Time-manipulation functions

	File locking function

	IPv6 functions for platforms that don’t have enough IPv6 support

	Endianness functions

	OS functions

	Threading and locking functions.

=== Utility functions

General-purpose utilities are in util.c; they include higher-level wrappers
around many of the compatibility functions to provide things like
file-at-once access, memory management functions, math, string manipulation,
time manipulation, filesystem manipulation, etc.

(Some functionality, like daemon-launching, would be better off in a
compatibility module.)

In util_format.c, we have code to implement stuff like base-32 and base-64
encoding.

The address.c module interfaces with the system resolver and implements
address parsing and formatting functions. It converts sockaddrs to and from
a more compact tor_addr_t type.

The di_ops.c module provides constant-time comparison and associative-array
operations, for side-channel avoidance.

The logging subsystem in log.c supports logging to files, to controllers, to
stdout/stderr, or to the system log.

The abstraction in memarea.c is used in cases when a large amount of
temporary objects need to be allocated, and they can all be freed at the same
time.

The torgzip.c module wraps the zlib library to implement compression.

Workqueue.c provides a simple multithreaded work-queue implementation.

Containers

The container.c module defines these container types, used throughout the Tor
codebase.

There is a dynamic array called smartlist, used as our general resizeable
array type. It supports sorting, searching, common set operations, and so
on. It has specialized functions for smartlists of strings, and for
heap-based priority queues.

There’s a bit-array type.

A set of mapping types to map strings, 160-bit digests, and 256-bit digests
to void *. These are what we generally use when we want O(1) lookup.

Additionally, for containers, we use the ht.h and tor_queue.h headers, in
src/ext. These provide intrusive hashtable and linked-list macros.

Cryptography

Once, we tried to keep our cryptography code in a single “crypto.c” file,
with an “aes.c” module containing an AES implementation for use with older
OpenSSLs.

Now, our practice has become to introduce crypto_*.c modules when adding new
cryptography backend code. We have modules for Ed25519, Curve25519,
secret-to-key algorithms, and password-based boxed encryption.

Our various TLS compatibility code, wrappers, and hacks are kept in
tortls.c, which is probably too full of Tor-specific kludges. I’m
hoping we can eliminate most of those kludges when we finally remove
support for older versions of our TLS handshake.

Memory management

Heap-allocation functions

Tor imposes a few light wrappers over C’s native malloc and free
functions, to improve convenience, and to allow wholescale replacement
of malloc and free as needed.

You should never use ‘malloc’, ‘calloc’, ‘realloc, or ‘free’ on their
own; always use the variants prefixed with ‘tor_’.
They are the same as the standard C functions, with the following
exceptions:

	tor_free(NULL) is a no-op.

	tor_free() is a macro that takes an lvalue as an argument and sets it to
NULL after freeing it. To avoid this behavior, you can use tor_free_()
instead.

	tor_malloc() and friends fail with an assertion if they are asked to
allocate a value so large that it is probably an underflow.

	It is always safe to tor_malloc(0), regardless of whether your libc
allows it.

	tor_malloc(), tor_realloc(), and friends are never allowed to fail.
Instead, Tor will die with an assertion. This means that you never
need to check their return values. See the next subsection for
information on why we think this is a good idea.

We define additional general-purpose memory allocation functions as well:

	tor_malloc_zero(x) behaves as calloc(1, x), except the it makes clear
the intent to allocate a single zeroed-out value.

	tor_reallocarray(x,y) behaves as the OpenBSD reallocarray function.
Use it for cases when you need to realloc() in a multiplication-safe
way.

And specific-purpose functions as well:

	tor_strdup() and tor_strndup() behaves as the underlying libc functions,
but use tor_malloc() instead of the underlying function.

	tor_memdup() copies a chunk of memory of a given size.

	tor_memdup_nulterm() copies a chunk of memory of a given size, then
NUL-terminates it just to be safe.

Why assert on failure?

Why don’t we allow tor_malloc() and its allies to return NULL?

First, it’s error-prone. Many programmers forget to check for NULL return
values, and testing for malloc() failures is a major pain.

Second, it’s not necessarily a great way to handle OOM conditions. It’s
probably better (we think) to have a memory target where we dynamically free
things ahead of time in order to stay under the target. Trying to respond to
an OOM at the point of tor_malloc() failure, on the other hand, would involve
a rare operation invoked from deep in the call stack. (Again, that’s
error-prone and hard to debug.)

Third, thanks to the rise of Linux and other operating systems that allow
memory to be overcommitted, you can’t actually ever rely on getting a NULL
from malloc() when you’re out of memory; instead you have to use an approach
closer to tracking the total memory usage.

Conventions for your own allocation functions.

Whenever you create a new type, the convention is to give it a pair of
x_new() and x_free() functions, named after the type.

Calling x_free(NULL) should always be a no-op.

Grow-only memory allocation: memarea.c

It’s often handy to allocate a large number of tiny objects, all of which
need to disappear at the same time. You can do this in tor using the
memarea.c abstraction, which uses a set of grow-only buffers for allocation,
and only supports a single “free” operation at the end.

Using memareas also helps you avoid memory fragmentation. You see, some libc
malloc implementations perform badly on the case where a large number of
small temporary objects are allocated at the same time as a few long-lived
objects of similar size. But if you use tor_malloc() for the long-lived ones
and a memarea for the temporary object, the malloc implementation is likelier
to do better.

To create a new memarea, use memarea_new(). To drop all the storage from a
memarea, and invalidate its pointers, use memarea_drop_all().

The allocation functions memarea_alloc(), memarea_alloc_zero(),
memarea_memdup(), memarea_strdup(), and memarea_strndup() are analogous to
the similarly-named malloc() functions. There is intentionally no
memarea_free() or memarea_realloc().

Collections in tor

Smartlists: Neither lists, nor especially smart.

For historical reasons, we call our dynamic-allocated array type
“smartlist_t”. It can grow or shrink as elements are added and removed.

All smartlists hold an array of void *. Whenever you expose a smartlist
in an API you must document which types its pointers actually hold.

Smartlists are created empty with smartlist_new() and freed with
smartlist_free(). See the containers.h module documentation for more
information; there are many convenience functions for commonly needed
operations.

Digest maps, string maps, and more.

Tor makes frequent use of maps from 160-bit digests, 256-bit digests,
or nul-terminated strings to void *. These types are digestmap_t,
digest256map_t, and strmap_t respectively. See the containers.h
module documentation for more information.

Intrusive lists and hashtables

For performance-sensitive cases, we sometimes want to use “intrusive”
collections: ones where the bookkeeping pointers are stuck inside the
structures that belong to the collection. If you’ve used the
BSD-style sys/queue.h macros, you’ll be familiar with these.

Unfortunately, the sys/queue.h macros vary significantly between the
platforms that have them, so we provide our own variants in
src/ext/tor_queue.h .

We also provide an intrusive hashtable implementation in src/ext/ht.h
. When you’re using it, you’ll need to define your own hash
functions. If attacker-induced collisions are a worry here, use the
cryptographic siphash24g function to extract hashes.

Time in tor

What time is it?

We have several notions of the current time in Tor.

The wallclock time is available from time(NULL) with
second-granularity and tor_gettimeofday() with microsecond
granularity. It corresponds most closely to “the current time and date”.

The monotonic time is available with the set of monotime_*
functions declared in compat_time.h. Unlike the wallclock time, it
can only move forward. It does not necessarily correspond to a real
world time, and it is not portable between systems.

The coarse monotonic time is available from the set of
monotime_coarse_* functions in compat_time.h. It is the same as
monotime_* on some platforms. On others, it gives a monotonic timer
with less precision, but which it’s more efficient to access.

Cached views of time.

On some systems (like Linux), many time functions use a VDSO to avoid
the overhead of a system call. But on other systems, gettimeofday()
and time() can be costly enough that you wouldn’t want to call them
tens of thousands of times. To get a recent, but not especially
accurate, view of the current time, see approx_time() and
tor_gettimeofday_cached().

Parsing and encoding time values

Tor has functions to parse and format time in these formats:

	RFC1123 format. (“Fri, 29 Sep 2006 15:54:20 GMT”). For this,
use format_rfc1123_time() and parse_rfc1123_time.

	ISO8601 format. (“2006-10-29 10:57:20”) For this, use
format_local_iso_time and format_iso_time. We also support the
variant format “2006-10-29T10:57:20” with format_iso_time_nospace, and
“2006-10-29T10:57:20.123456” with format_iso_time_nospace_usec.

	HTTP format collections (preferably “Mon, 25 Jul 2016 04:01:11
GMT” or possibly “Wed Jun 30 21:49:08 1993” or even “25-Jul-16
04:01:11 GMT”). For this, use parse_http_time. Don’t generate anything
but the first format.

Some of these functions use struct tm. You can use the standard
tor_localtime_r and tor_gmtime_r() to wrap these in a safe way. We
also have a tor_timegm() function.

Scheduling events

The main way to schedule a not-too-frequent periodic event with
respect to the Tor mainloop is via the mechanism in periodic.c.
There’s a big table of periodic_events in main.c, each of which gets
invoked on its own schedule. You should not expect more than about
one second of accuracy with these timers.

You can create an independent timer using libevent directly, or using
the periodic_timer_new() function. But you should avoid doing this
for per-connection or per-circuit timers: Libevent’s internal timer
implementation uses a min-heap, and those tend to start scaling poorly
once you have a few thousand entries.

If you need to create a large number of fine-grained timers for some
purpose, you should consider the mechanism in src/common/timers.c,
which is optimized for the case where you have a large number of
timers with not-too-long duration, many of which will be deleted
before they actually expire. These timers should be reasonably
accurate within a handful of milliseconds – possibly better on some
platforms. (The timers.c module uses William Ahern’s timeout.c
implementation as its backend, which is based on a hierarchical timing
wheel algorithm. It’s cool stuff; check it out.)

Lower-level cryptography functionality in Tor

Generally speaking, Tor code shouldn’t be calling OpenSSL (or any
other crypto library) directly. Instead, we should indirect through
one of the functions in src/common/crypto*.c or src/common/tortls.c.

Cryptography functionality that’s available is described below.

RNG facilities

The most basic RNG capability in Tor is the crypto_rand() family of
functions. These currently use OpenSSL’s RAND_() backend, but may use
something faster in the future.

In addition to crypto_rand(), which fills in a buffer with random
bytes, we also have functions to produce random integers in certain
ranges; to produce random hostnames; to produce random doubles, etc.

When you’re creating a long-term cryptographic secret, you might want
to use crypto_strongest_rand() instead of crypto_rand(). It takes the
operating system’s entropy source and combines it with output from
crypto_rand(). This is a pure paranoia measure, but it might help us
someday.

You can use smartlist_choose() to pick a random element from a smartlist
and smartlist_shuffle() to randomize the order of a smartlist. Both are
potentially a bit slow.

Cryptographic digests and related functions

We treat digests as separate types based on the length of their
outputs. We support one 160-bit digest (SHA1), two 256-bit digests
(SHA256 and SHA3-256), and two 512-bit digests (SHA512 and SHA3-512).

You should not use SHA1 for anything new.

The crypto_digest*() family of functions manipulates digests. You
can either compute a digest of a chunk of memory all at once using
crypto_digest(), crypto_digest256(), or crypto_digest512(). Or you
can create a crypto_digest_t object with
crypto_digest{,256,512}_new(), feed information to it in chunks using
crypto_digest_add_bytes(), and then extract the final digest using
crypto_digest_get_digest(). You can copy the state of one of these
objects using crypto_digest_dup() or crypto_digest_assign().

We support the HMAC hash-based message authentication code
instantiated using SHA256. See crypto_hmac_sha256. (You should not
add any HMAC users with SHA1, and HMAC is not necessary with SHA3.)

We also support the SHA3 cousins, SHAKE128 and SHAKE256. Unlike
digests, these are extendable output functions (or XOFs) where you can
get any amount of output. Use the crypto_xof_*() functions to access
these.

We have several ways to derive keys from cryptographically strong secret
inputs (like diffie-hellman outputs). The old
crypto_expand_key_material-TAP() performs an ad-hoc KDF based on SHA1 – you
shouldn’t use it for implementing anything but old versions of the Tor
protocol. You can use HKDF-SHA256 (as defined in RFC5869) for more modern
protocols. Also consider SHAKE256.

If your input is potentially weak, like a password or passphrase, use a salt
along with the secret_to_key() functions as defined in crypto_s2k.c. Prefer
scrypt over other hashing methods when possible. If you’re using a password
to encrypt something, see the “boxed file storage” section below.

Finally, in order to store objects in hash tables, Tor includes the
randomized SipHash 2-4 function. Call it via the siphash24g() function in
src/ext/siphash.h whenever you’re creating a hashtable whose keys may be
manipulated by an attacker in order to DoS you with collisions.

Stream ciphers

You can create instances of a stream cipher using crypto_cipher_new().
These are stateful objects of type crypto_cipher_t. Note that these
objects only support AES-128 right now; a future version should add
support for AES-128 and/or ChaCha20.

You can encrypt/decrypt with crypto_cipher_encrypt or
crypto_cipher_decrypt. The crypto_cipher_crypt_inplace function performs
an encryption without a copy.

Note that sensible people should not use raw stream ciphers; they should
probably be using some kind of AEAD. Sorry.

Public key functionality

We support four public key algorithms: DH1024, RSA, Curve25519, and
Ed25519.

We support DH1024 over two prime groups. You access these via the
crypto_dh_*() family of functions.

We support RSA in many bit sizes for signing and encryption. You access
it via the crypto_pk_() family of functions. Note that a crypto_pk_t
may or may not include a private key. See the crypto_pk_ functions in
crypto.c for a full list of functions here.

For Curve25519 functionality, see the functions and types in
crypto_curve25519.c. Curve25519 is generally suitable for when you need
a secure fast elliptic-curve diffie hellman implementation. When
designing new protocols, prefer it over DH in Z_p.

For Ed25519 functionality, see the functions and types in
crypto_ed25519.c. Ed25519 is a generally suitable as a secure fast
elliptic curve signature method. For new protocols, prefer it over RSA
signatures.

Metaformats for storage

When OpenSSL manages the storage of some object, we use whatever format
OpenSSL provides – typically, some kind of PEM-wrapped base 64 encoding
that starts with “—– BEGIN CRYPTOGRAPHIC OBJECT —-“.

When we manage the storage of some cryptographic object, we prefix the
object with 32-byte NUL-padded prefix in order to avoid accidental
object confusion; see the crypto_read_tagged_contents_from_file() and
crypto_write_tagged_contents_to_file() functions for manipulating
these. The prefix is “== type: tag ==”, where type describes the object
and its encoding, and tag indicates which one it is.

Boxed-file storage

When managing keys, you frequently want to have some way to write a
secret object to disk, encrypted with a passphrase. The crypto_pwbox
and crypto_unpwbox functions do so in a way that’s likely to be
readable by future versions of Tor.

Certificates

We have, alas, several certificate types in Tor.

The tor_x509_cert_t type represents an X.509 certificate. This document
won’t explain X.509 to you – possibly, no document can. (OTOH, Peter
Gutmann’s “x.509 style guide”, though severely dated, does a good job of
explaining how awful x.509 can be.) Do not introduce any new usages of
X.509. Right now we only use it in places where TLS forces us to do so.

The authority_cert_t type is used only for directory authority keys. It
has a medium-term signing key (which the authorities actually keep
online) signed by a long-term identity key (which the authority operator
had really better be keeping offline). Don’t use it for any new kind of
certificate.

For new places where you need a certificate, consider tor_cert_t: it
represents a typed and dated something signed by an Ed25519 key. The
format is described in tor-spec. Unlike x.509, you can write it on a
napkin.

(Additionally, the Tor directory design uses a fairly wide variety of
documents that include keys and which are signed by keys. You can
consider these documents to be an additional kind of certificate if you
want.)

TLS

Tor’s TLS implementation is more tightly coupled to OpenSSL than we’d
prefer. You can read most of it in tortls.c.

Unfortunately, TLS’s state machine and our requirement for nonblocking
IO support means that using TLS in practice is a bit hairy, since
logical writes can block on a physical reads, and vice versa.

If you are lucky, you will never have to look at the code here.

OS compatibility functions

We’ve got a bunch of functions to wrap differences between various
operating systems where we run.

The filesystem

We wrap the most important filesystem functions with load-file,
save-file, and map-file abstractions declared in util.c or compat.c. If
you’re messing about with file descriptors yourself, you might be doing
things wrong. Most of the time, write_str_to_file() and
read_str_from_file() are all you need.

Use the check_private_directory() function to create or verify the
presence of directories, and tor_listdir() to list the files in a
directory.

Those modules also have functions for manipulating paths a bit.

Networking

Nearly all the world is on a Berkeley sockets API, except for
windows, whose version of the Berkeley API was corrupted by late-90s
insistence on backward compatibility with the
sort-of-berkeley-sort-of-not add-on thing that was WinSocks.

What’s more, everybody who implemented sockets realized that select()
wasn’t a very good way to do nonblocking IO… and then the various
implementations all decided to so something different.

You can forget about most of these differences, fortunately: We use
libevent to hide most of the differences between the various networking
backends, and we add a few of our own functions to hide the differences
that Libevent doesn’t.

To create a network connection, the right level of abstraction to look
at is probably the connection_t system in connection.c. Most of the
lower level work has already been done for you. If you need to
instantiate something that doesn’t fit well with connection_t, you
should see whether you can instantiate it with connection_t anyway – or
you might need to refactor connection.c a little.

Whenever possible, represent network addresses as tor_addr_t.

Process launch and monitoring

Launching and/or monitoring a process is tricky business. You can use
the mechanisms in procmon.c and tor_spawn_background(), but they’re both
a bit wonky. A refactoring would not be out of order.

Threads in Tor

Tor is based around a single main thread and one or more worker
threads. We aim (with middling success) to use worker threads for
CPU-intensive activities and the main thread for our networking.
Fortunately (?) we have enough cryptography that moving what we can of the
cryptographic processes to the workers should achieve good parallelism under most
loads. Unfortunately, we only have a small fraction of our
cryptography done in our worker threads right now.

Our threads-and-workers abstraction is defined in workqueue.c, which
combines a work queue with a thread pool, and integrates the
signalling with libevent. Tor main instance of a work queue is
instantiated in cpuworker.c. It will probably need some refactoring
as more types of work are added.

On a lower level, we provide locks with tor_mutex_t, conditions with
tor_cond_t, and thread-local storage with tor_threadlocal_t, all of
which are specified in compat_threads.h and implemented in an OS-
specific compat_*threads.h module.

Try to minimize sharing between threads: it is usually best to simply
make the worker “own” all the data it needs while the work is in
progress, and to give up ownership when it’s complete.

String processing in Tor

Since you’re reading about a C program, you probably expected this
section: it’s full of functions for manipulating the (notoriously
dubious) C string abstraction. I’ll describe some often-missed
highlights here.

Comparing strings and memory chunks

We provide strcmpstart() and strcmpend() to perform a strcmp with the start
or end of a string.

tor_assert(!strcmpstart("Hello world","Hello"));
tor_assert(!strcmpend("Hello world","world"));

tor_assert(!strcasecmpstart("HELLO WORLD","Hello"));
tor_assert(!strcasecmpend("HELLO WORLD","world"));

To compare two string pointers, either of which might be NULL, use
strcmp_opt().

To search for a string or a chunk of memory within a non-null
terminated memory block, use tor_memstr or tor_memmem respectively.

We avoid using memcmp() directly, since it tends to be used in cases
when having a constant-time operation would be better. Instead, we
recommend tor_memeq() and tor_memneq() for when you need a
constant-time operation. In cases when you need a fast comparison,
and timing leaks are not a danger, you can use fast_memeq() and
fast_memneq().

It’s a common pattern to take a string representing one or more lines
of text, and search within it for some other string, at the start of a
line. You could search for “\ntarget”, but that would miss the first
line. Instead, use find_str_at_start_of_line.

Parsing text

Over the years, we have accumulated lots of ways to parse text –
probably too many. Refactoring them to be safer and saner could be a
good project! The one that seems most error-resistant is tokenizing
text with smartlist_split_strings(). This function takes a smartlist,
a string, and a separator, and splits the string along occurrences of
the separator, adding new strings for the sub-elements to the given
smartlist.

To handle time, you can use one of the functions mentioned above in
“Parsing and encoding time values”.

For numbers in general, use the tor_parse_{long,ulong,double,uint64}
family of functions. Each of these can be called in a few ways. The
most general is as follows:

 const int BASE = 10;
 const int MINVAL = 10, MAXVAL = 10000;
 const char *next;
 int ok;
 long lng = tor_parse_long("100", BASE, MINVAL, MAXVAL, &ok, &next);

The return value should be ignored if “ok” is set to false. The input
string needs to contain an entire number, or it’s considered
invalid… unless the “next” pointer is available, in which case extra
characters at the end are allowed, and “next” is set to point to the
first such character.

Generating blocks of text

For not-too-large blocks of text, we provide tor_asprintf(), which
behaves like other members of the sprintf() family, except that it
always allocates enough memory on the heap for its output.

For larger blocks: Rather than using strlcat and strlcpy to build
text, or keeping pointers to the interior of a memory block, we
recommend that you use the smartlist_* functions to build a smartlist
full of substrings in order. Then you can concatenate them into a
single string with smartlist_join_strings(), which also takes optional
separator and terminator arguments.

As a convenience, we provide smartlist_add_asprintf(), which combines
the two methods above together. Many of the cryptographic digest
functions also accept a not-yet-concatenated smartlist of strings.

Logging helpers

Often we’d like to log a value that comes from an untrusted source.
To do this, use escaped() to escape the nonprintable characters and
other confusing elements in a string, and surround it by quotes. (Use
esc_for_log() if you need to allocate a new string.)

It’s also handy to put memory chunks into hexadecimal before logging;
you can use hex_str(memory, length) for that.

The escaped() and hex_str() functions both provide outputs that are
only valid till they are next invoked; they are not threadsafe.

Data flow in the Tor process

We read bytes from the network, we write bytes to the network. For the
most part, the bytes we write correspond roughly to bytes we have read,
with bits of cryptography added in.

The rest is a matter of details.

[image: Diagram of main data flows in Tor]Diagram of main data flows in Tor

Connections and buffers: reading, writing, and interpreting.

At a low level, Tor’s networking code is based on “connections”. Each
connection represents an object that can send or receive network-like
events. For the most part, each connection has a single underlying TCP
stream (I’ll discuss counterexamples below).

A connection that behaves like a TCP stream has an input buffer and an
output buffer. Incoming data is
written into the input buffer (“inbuf”); data to be written to the
network is queued on an output buffer (“outbuf”).

Buffers are implemented in buffers.c. Each of these buffers is
implemented as a linked queue of memory extents, in the style of classic
BSD mbufs, or Linux skbufs.

A connection’s reading and writing can be enabled or disabled. Under
the hood, this functionality is implemented using libevent events: one
for reading, one for writing. These events are turned on/off in
main.c, in the functions connection_{start,stop}_{reading,writing}.

When a read or write event is turned on, the main libevent loop polls
the kernel, asking which sockets are ready to read or write. (This
polling happens in the event_base_loop() call in run_main_loop_once()
in main.c.) When libevent finds a socket that’s ready to read or write,
it invokes conn_{read,write}_callback(), also in main.c

These callback functions delegate to connection_handle_read() and
connection_handle_write() in connection.c, which read or write on the
network as appropriate, possibly delegating to openssl.

After data is read or written, or other event occurs, these
connection_handle_read_write() functions call logic functions whose job is
to respond to the information. Some examples included:

	connection_flushed_some() – called after a connection writes any
amount of data from its outbuf.

	connection_finished_flushing() – called when a connection has
emptied its outbuf.

	connection_finished_connecting() – called when an in-process connection
finishes making a remote connection.

	connection_reached_eof() – called after receiving a FIN from the
remote server.

	connection_process_inbuf() – called when more data arrives on
the inbuf.

These functions then call into specific implementations depending on
the type of the connection. For example, if the connection is an
edge_connection_t, connection_reached_eof() will call
connection_edge_reached_eof().

Note: “Also there are bufferevents!” We have vestigial
code for an alternative low-level networking
implementation, based on Libevent’s evbuffer and bufferevent
code. These two object types take on (most of) the roles of
buffers and connections respectively. It isn’t working in today’s
Tor, due to code rot and possible lingering libevent bugs. More
work is needed; it would be good to get this working efficiently
again, to have IOCP support on Windows.

Controlling connections

A connection can have reading or writing enabled or disabled for a
wide variety of reasons, including:

	Writing is disabled when there is no more data to write

	For some connection types, reading is disabled when the inbuf is
too full.

	Reading/writing is temporarily disabled on connections that have
recently read/written enough data up to their bandwidth

	Reading is disabled on connections when reading more data from them
would require that data to be buffered somewhere else that is
already full.

Currently, these conditions are checked in a diffuse set of
increasingly complex conditional expressions. In the future, it could
be helpful to transition to a unified model for handling temporary
read/write suspensions.

Kinds of connections

Today Tor has the following connection and pseudoconnection types.
For the most part, each type of channel has an associated C module
that implements its underlying logic.

Edge connections receive data from and deliver data to points
outside the onion routing network. See connection_edge.c. They fall into two types:

Entry connections are a type of edge connection. They receive data
from the user running a Tor client, and deliver data to that user.
They are used to implement SOCKSPort, TransPort, NATDPort, and so on.
Sometimes they are called “AP” connections for historical reasons (it
used to stand for “Application Proxy”).

Exit connections are a type of edge connection. They exist at an
exit node, and transmit traffic to and from the network.

(Entry connections and exit connections are also used as placeholders
when performing a remote DNS request; they are not decoupled from the
notion of “stream” in the Tor protocol. This is implemented partially
in connection_edge.c, and partially in dnsserv.c and dns.c.)

OR connections send and receive Tor cells over TLS, using some
version of the Tor link protocol. Their implementation is spread
across connection_or.c, with a bit of logic in command.c,
relay.c, and channeltls.c.

Extended OR connections are a type of OR connection for use on
bridges using pluggable transports, so that the PT can tell the bridge
some information about the incoming connection before passing on its
data. They are implemented in ext_orport.c.

Directory connections are server-side or client-side connections
that implement Tor’s HTTP-based directory protocol. These are
instantiated using a socket when Tor is making an unencrypted HTTP
connection. When Tor is tunneling a directory request over a Tor
circuit, directory connections are implemented using a linked
connection pair (see below). Directory connections are implemented in
directory.c; some of the server-side logic is implemented in
dirserver.c.

Controller connections are local connections to a controller
process implementing the controller protocol from
control-spec.txt. These are in control.c.

Listener connections are not stream oriented! Rather, they wrap a
listening socket in order to detect new incoming connections. They
bypass most of stream logic. They don’t have associated buffers.
They are implemented in connection.c.

[image: structure hierarchy for connection types]structure hierarchy for connection types

Note: “History Time!” You might occasionally find reference to a couple types of connections
which no longer exist in modern Tor. A CPUWorker connection
connected the main Tor process to a thread or process used for
computation. (Nowadays we use in-process communication.) Even more
anciently, a DNSWorker connection connected the main tor process to
a separate thread or process used for running gethostbyname() or
getaddrinfo(). (Nowadays we use Libevent’s evdns facility to
perform DNS requests asynchronously.)

Linked connections

Sometimes two channels are joined together, such that data which the
Tor process sends on one should immediately be received by the same
Tor process on the other. (For example, when Tor makes a tunneled
directory connection, this is implemented on the client side as a
directory connection whose output goes, not to the network, but to a
local entry connection. And when a directory receives a tunnelled
directory connection, this is implemented as an exit connection whose
output goes, not to the network, but to a local directory connection.)

The earliest versions of Tor to support linked connections used
socketpairs for the purpose. But using socketpairs forced us to copy
data through kernelspace, and wasted limited file descriptors. So
instead, a pair of connections can be linked in-process. Each linked
connection has a pointer to the other, such that data written on one
is immediately readable on the other, and vice versa.

From connections to channels

There’s an abstraction layer above OR connections (the ones that
handle cells) and below cells called Channels. A channel’s
purpose is to transmit authenticated cells from one Tor instance
(relay or client) to another.

Currently, only one implementation exists: Channel_tls, which sends
and receiveds cells over a TLS-based OR connection.

Cells are sent on a channel using
channel_write_{,packed_,var_}cell(). Incoming cells arrive on a
channel from its backend using channel_queue*_cell(), and are
immediately processed using channel_process_cells().

Some cell types are handled below the channel layer, such as those
that affect handshaking only. And some others are passed up to the
generic cross-channel code in command.c: cells like DESTROY and
CREATED are all trivial to handle. But relay cells
require special handling…

From channels through circuits

When a relay cell arrives on an existing circuit, it is handled in
circuit_receive_relay_cell() – one of the innermost functions in
Tor. This function encrypts or decrypts the relay cell as
appropriate, and decides whether the cell is intended for the current
hop of the circuit.

If the cell is intended for the current hop, we pass it to
connection_edge_process_relay_cell() in relay.c, which acts on it
based on its relay command, and (possibly) queues its data on an
edge_connection_t.

If the cell is not intended for the current hop, we queue it for the
next channel in sequence with append cell_to_circuit_queue(). This
places the cell on a per-circuit queue for cells headed out on that
particular channel.

Sending cells on circuits: the complicated bit.

Relay cells are queued onto circuits from one of two (main) sources:
reading data from edge connections, and receiving a cell to be relayed
on a circuit. Both of these sources place their cells on cell queue:
each circuit has one cell queue for each direction that it travels.

A naive implementation would skip using cell queues, and instead write
each outgoing relay cell. (Tor did this in its earlier versions.)
But such an approach tends to give poor performance, because it allows
high-volume circuits to clog channels, and it forces the Tor server to
send data queued on a circuit even after that circuit has been closed.

So by using queues on each circuit, we can add cells to each channel
on a just-in-time basis, choosing the cell at each moment based on
a performance-aware algorithm.

This logic is implemented in two main modules: scheduler.c and
circuitmux*.c. The scheduler code is responsible for determining
globally, across all channels that could write cells, which one should
next receive queued cells. The circuitmux code determines, for all
of the circuits with queued cells for a channel, which one should
queue the next cell.

(This logic applies to outgoing relay cells only; incoming relay cells
are processed as they arrive.)

Tor’s modules

Generic modules

buffers.c
: Implements the buf_t buffered data type for connections, and several
low-level data handling functions to handle network protocols on it.

channel.c
: Generic channel implementation. Channels handle sending and receiving cells
among tor nodes.

channeltls.c
: Channel implementation for TLS-based OR connections. Uses connection_or.c.

circuitbuild.c
: Code for constructing circuits and choosing their paths. (Note:
this module could plausibly be split into handling the client side,
the server side, and the path generation aspects of circuit building.)

circuitlist.c
: Code for maintaining and navigating the global list of circuits.

circuitmux.c
: Generic circuitmux implementation. A circuitmux handles deciding, for a
particular channel, which circuit should write next.

circuitmux_ewma.c
: A circuitmux implementation based on the EWMA (exponentially
weighted moving average) algorithm.

circuituse.c
: Code to actually send and receive data on circuits.

command.c
: Handles incoming cells on channels.

config.c
: Parses options from torrc, and uses them to configure the rest of Tor.

confparse.c
: Generic torrc-style parser. Used to parse torrc and state files.

connection.c
: Generic and common connection tools, and implementation for the simpler
connection types.

connection_edge.c
: Implementation for entry and exit connections.

connection_or.c
: Implementation for OR connections (the ones that send cells over TLS).

main.c
: Principal entry point, main loops, scheduled events, and network
management for Tor.

ntmain.c
: Implements Tor as a Windows service. (Not very well.)

onion.c
: Generic code for generating and responding to CREATE and CREATED
cells, and performing the appropriate onion handshakes. Also contains
code to manage the server-side onion queue.

onion_fast.c
: Implements the old SHA1-based CREATE_FAST/CREATED_FAST circuit
creation handshake. (Now deprecated.)

onion_ntor.c
: Implements the Curve25519-based NTOR circuit creation handshake.

onion_tap.c
: Implements the old RSA1024/DH1024-based TAP circuit creation handshake. (Now
deprecated.)

relay.c
: Handles particular types of relay cells, and provides code to receive,
encrypt, route, and interpret relay cells.

scheduler.c
: Decides which channel/circuit pair is ready to receive the next cell.

statefile.c
: Handles loading and storing Tor’s state file.

tor_main.c
: Contains the actual main() function. (This is placed in a separate
file so that the unit tests can have their own main().)

Node-status modules

directory.c
: Implements the HTTP-based directory protocol, including sending,
receiving, and handling most request types. (Note: The client parts
of this, and the generic-HTTP parts of this, could plausibly be split
off.)

microdesc.c
: Implements the compact “microdescriptor” format for keeping track of
what we know about a router.

networkstatus.c
: Code for fetching, storing, and interpreting consensus vote documents.

nodelist.c
: Higher-level view of our knowledge of which Tor servers exist. Each
node_t corresponds to a router we know about.

routerlist.c
: Code for storing and retrieving router descriptors and extrainfo
documents.

routerparse.c
: Generic and specific code for parsing all Tor directory information
types.

routerset.c
: Parses and interprets a specification for a set of routers (by IP
range, fingerprint, nickname (deprecated), or country).

Client modules

addressmap.c
: Handles client-side associations between one address and another.
These are used to implement client-side DNS caching (NOT RECOMMENDED),
MapAddress directives, Automapping, and more.

circpathbias.c
: Path bias attack detection for circuits: tracks whether
connections made through a particular guard have an unusually high failure rate.

circuitstats.c
: Code to track circuit performance statistics in order to adapt our behavior.
Notably includes an algorithm to track circuit build times.

dnsserv.c
: Implements DNSPort for clients. (Note that in spite of the word
“server” in this module’s name, it is used for Tor clients. It
implements a DNS server, not DNS for servers.)

entrynodes.c
: Chooses, monitors, and remembers guard nodes. Also contains some
bridge-related code.

torcert.c
: Code to interpret and generate Ed25519-based certificates.

Server modules

dns.c
: Server-side DNS code. Handles sending and receiving DNS requests on
exit nodes, and implements the server-side DNS cache.

dirserv.c
: Implements part of directory caches that handles responding to
client requests.

ext_orport.c
: Implements the extended ORPort protocol for communication between
server-side pluggable transports and Tor servers.

hibernate.c
: Performs bandwidth accounting, and puts Tor relays into hibernation
when their bandwidth is exhausted.

router.c
: Management code for running a Tor server. In charge of RSA key
maintenance, descriptor generation and uploading.

routerkeys.c
: Key handling code for a Tor server. (Currently handles only the
Ed25519 keys, but the RSA keys could be moved here too.)

Onion service modules

rendcache.c
: Stores onion service descriptors.

rendclient.c
: Client-side implementation of the onion service protocol.

rendcommon.c
: Parts of the onion service protocol that are shared by clients,
services, and/or Tor servers.

rendmid.c
: Tor-server-side implementation of the onion service protocol. (Handles
acting as an introduction point or a rendezvous point.)

rendservice.c
: Service-side implementation of the onion service protocol.

replaycache.c
: Backend to check introduce2 requests for replay attempts.

Authority modules

dircollate.c
: Helper for dirvote.c: Given a set of votes, each containing a list
of Tor nodes, determines which entries across all the votes correspond
to the same nodes, and yields them in a useful order.

dirvote.c
: Implements the directory voting algorithms that authorities use.

keypin.c
: Implements a persistent key-pinning mechanism to tie RSA1024
identities to ed25519 identities.

Miscellaneous modules

control.c
: Implements the Tor controller protocol.

cpuworker.c
: Implements the inner work queue function. We use this to move the
work of circuit creation (on server-side) to other CPUs.

fp_pair.c
: Types for handling 2-tuples of 20-byte fingerprints.

geoip.c
: Parses geoip files (which map IP addresses to country codes), and
performs lookups on the internal geoip table. Also stores some
geoip-related statistics.

policies.c
: Parses and implements Tor exit policies.

reasons.c
: Maps internal reason-codes to human-readable strings.

rephist.c
: Tracks Tor servers’ performance over time.

status.c
: Writes periodic “heartbeat” status messages about the state of the Tor
process.

transports.c
: Implements management for the pluggable transports subsystem.

This not that

Don’t use memcmp. Use {tor,fast}_{memeq,memneq,memcmp}.

Don’t use assert. Use tor_assert or tor_assert_nonfatal or BUG. Prefer
nonfatal assertions or BUG()s.

Don’t use sprintf or snprintf. Use tor_asprintf or tor_snprintf.

Don’t write hand-written binary parsers. Use trunnel.

Don’t use malloc, realloc, calloc, free, strdup, etc. Use tor_malloc,
tor_realloc, tor_calloc, tor_free, tor_strdup, etc.

Don’t use tor_realloc(x, y*z). Use tor_reallocarray(x, y, z);

Don’t say “if (x) foo_free(x)”. Just foo_free(x) and make sure that
foo_free(NULL) is a no-op.

Don’t use toupper or tolower; use TOR_TOUPPER and TOR_TOLOWER.

Don’t use isalpha, isalnum, etc. Instead use TOR_ISALPHA, TOR_ISALNUM, etc.

Don’t use strcat, strcpy, strncat, or strncpy. Use strlcat and strlcpy
instead.

Don’t use tor_asprintf then smartlist_add; use smartlist_add_asprintf.

Don’t use any of these functions: they aren’t portable. Use the
version prefixed with tor_ instead: strtok_r, memmem, memstr,
asprintf, localtime_r, gmtime_r, inet_aton, inet_ntop, inet_pton,
getpass, ntohll, htonll, strdup, (This list is incomplete.)

Don’t create or close sockets directly. Instead use the wrappers in
compat.h.

When creating new APIs, only use ‘char *’ to represent ‘pointer to a
nul-terminated string’. Represent ‘pointer to a chunk of memory’ as
‘uint8_t *’. (Many older Tor APIs ignore this rule.)

Don’t encode/decode u32, u64, or u16 to byte arrays by casting
pointers. That can crash if the pointers aren’t aligned, and can cause
endianness problems. Instead say something more like set_uint32(ptr,
htonl(foo)) to encode, and ntohl(get_uint32(ptr)) to decode.

Don’t declare a 0-argument function with “void foo()”. That’s C++
syntax. In C you say “void foo(void)”.

When creating new APIs, use const everywhere you reasonably can.

Sockets should have type tor_socket_t, not int.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Tor codebase’s documentation!

 		
 Overview

 		
 The very high level

 		
 Some key high-level abstractions

 		
 The rest of this document.

 		
 Utility code in Tor

 		
 Compatibility code

 		
 Containers

 		
 Cryptography

 		
 Memory management

 		
 Heap-allocation functions

 		
 Why assert on failure?

 		
 Conventions for your own allocation functions.

 		
 Grow-only memory allocation: memarea.c

 		
 Collections in tor

 		
 Smartlists: Neither lists, nor especially smart.

 		
 Digest maps, string maps, and more.

 		
 Intrusive lists and hashtables

 		
 Time in tor

 		
 What time is it?

 		
 Cached views of time.

 		
 Parsing and encoding time values

 		
 Scheduling events

 		
 Lower-level cryptography functionality in Tor

 		
 RNG facilities

 		
 Cryptographic digests and related functions

 		
 Stream ciphers

 		
 Public key functionality

 		
 Metaformats for storage

 		
 Boxed-file storage

 		
 Certificates

 		
 TLS

 		
 OS compatibility functions

 		
 The filesystem

 		
 Networking

 		
 Process launch and monitoring

 		
 Threads in Tor

 		
 String processing in Tor

 		
 Comparing strings and memory chunks

 		
 Parsing text

 		
 Generating blocks of text

 		
 Logging helpers

 		
 Data flow in the Tor process

 		
 Connections and buffers: reading, writing, and interpreting.

 		
 Controlling connections

 		
 Kinds of connections

 		
 Linked connections

 		
 From connections to channels

 		
 From channels through circuits

 		
 Sending cells on circuits: the complicated bit.

 		
 Tor’s modules

 		
 Generic modules

 		
 Node-status modules

 		
 Client modules

 		
 Server modules

 		
 Onion service modules

 		
 Authority modules

 		
 Miscellaneous modules

 		
 This not that

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/up.png

